驱动改变和完整代码

就目前而言,除了我们可以查看漂亮的IR调用之外,LLVM的代码生成并没有给我们带来太多帮助。
示例代码将对codegen的调用插入到HandleDefinitionHandleExtern等函数中,然后转储出LLVM IR。这为查看简单函数的LLVM IR提供了一种很好的方法。例如:

ready> 4+5;
Read top-level expression:
define double @0() {
entry:
  ret double 9.000000e+00
}

请注意解析器如何将顶级表达式转换为我们的匿名函数。
当我们在下一章中添加JIT支持时,这将非常方便。
另请注意,代码是字面上转录的,除了IRBuilder完成的简单常量折叠之外,不会执行任何优化。
我们将在下一章中明确添加优化。

ready> def foo(a b) a*a + 2*a*b + b*b;
Read function definition:
define double @foo(double %a, double %b) {
entry:
  %multmp = fmul double %a, %a
  %multmp1 = fmul double 2.000000e+00, %a
  %multmp2 = fmul double %multmp1, %b
  %addtmp = fadd double %multmp, %multmp2
  %multmp3 = fmul double %b, %b
  %addtmp4 = fadd double %addtmp, %multmp3
  ret double %addtmp4
}

这显示了一些简单的算术。
请注意与我们用于创建指令的LLVM构建器调用具有惊人的相似性。

ready> def bar(a) foo(a, 4.0) + bar(31337);
Read function definition:
define double @bar(double %a) {
entry:
  %calltmp = call double @foo(double %a, double 4.000000e+00)
  %calltmp1 = call double @bar(double 3.133700e+04)
  %addtmp = fadd double %calltmp, %calltmp1
  ret double %addtmp
}

这显示了一些函数调用。 请注意,如果调用此函数将需要很长时间才能执行。
在未来,我们将添加条件控制流以实际使递归有用:)。

ready> extern cos(x);
Read extern:
declare double @cos(double)

ready> cos(1.234);
Read top-level expression:
define double @1() {
entry:
  %calltmp = call double @cos(double 1.234000e+00)
  ret double %calltmp
}

下面的代码演示了libm的extern“cos”函数,以及对它的调用。

ready> ^D
; ModuleID = 'my cool jit'

define double @0() {
entry:
  %addtmp = fadd double 4.000000e+00, 5.000000e+00
  ret double %addtmp
}

define double @foo(double %a, double %b) {
entry:
  %multmp = fmul double %a, %a
  %multmp1 = fmul double 2.000000e+00, %a
  %multmp2 = fmul double %multmp1, %b
  %addtmp = fadd double %multmp, %multmp2
  %multmp3 = fmul double %b, %b
  %addtmp4 = fadd double %addtmp, %multmp3
  ret double %addtmp4
}

define double @bar(double %a) {
entry:
  %calltmp = call double @foo(double %a, double 4.000000e+00)
  %calltmp1 = call double @bar(double 3.133700e+04)
  %addtmp = fadd double %calltmp, %calltmp1
  ret double %addtmp
}

declare double @cos(double)

define double @1() {
entry:
  %calltmp = call double @cos(double 1.234000e+00)
  ret double %calltmp
}

当您退出当前演示时(通过在Linux上通过CTRL + D发送EOF或在Windows上按CTRL + Z和ENTER发送EOF),它会为生成的整个模块转储IR。在这里,您可以看到所有功能相互引用的大图。

这包含了Kaleidoscope教程的第三章。 接下来,我们将描述如何为此添加JIT codegen和优化器支持,以便我们实际上可以开始运行代码!

以下是我们的运行示例的完整代码清单,使用LLVM代码生成器进行了增强。因为它使用LLVM库,所以我们需要将它们链接起来。为此,我们使用llvm-config工具通知我们的makefile命令行有关使用哪些选项:

# Compile
clang++ -g -O3 toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core` -o toy
# Run
./toy

完整代码:

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;

if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');

NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;
}

if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

if (LastChar != EOF)
return gettok();
}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() = default;

virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}

Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}

Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,
std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)
: Name(Name), Args(std::move(Args)) {}

Function *codegen();
const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;

if (CurTok != ')')
return LogError("expected ')'");
getNextToken(); // eat ).
return V;
}

/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {
if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));
else
return nullptr;

if (CurTok == ')')
break;

if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");
getNextToken();
}
}

// Eat the ')'.
getNextToken();

return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
}
}

/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();

// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;

// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop

// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)
return nullptr;

// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)
return nullptr;
}

// Merge LHS/RHS.
LHS =
llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}

/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;

if (auto E = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;
}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");
return V;
}

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;

switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");
case '-':
return Builder.CreateFSub(L, R, "subtmp");
case '*':
return Builder.CreateFMul(L, R, "multmp");
case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
default:
return LogErrorV("invalid binary operator");
}
}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())
return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// First, check for an existing function from a previous 'extern' declaration.
Function *TheFunction = TheModule->getFunction(Proto->getName());

if (!TheFunction)
TheFunction = Proto->codegen();

if (!TheFunction)
return nullptr;

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[Arg.getName()] = &Arg;

if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);

// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);

return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->print(errs());
fprintf(stderr, "\n");
}
} else {
// Skip token for error recovery.
getNextToken();
}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->print(errs());
fprintf(stderr, "\n");
}
} else {
// Skip token for error recovery.
getNextToken();
}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read top-level expression:");
FnIR->print(errs());
fprintf(stderr, "\n");
}
} else {
// Skip token for error recovery.
getNextToken();
}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
case ';': // ignore top-level semicolons.
getNextToken();
break;
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

// Make the module, which holds all the code.
TheModule = llvm::make_unique<Module>("my cool jit", TheContext);

// Run the main "interpreter loop" now.
MainLoop();

// Print out all of the generated code.
TheModule->print(errs(), nullptr);

return 0;
}